Author Affiliations
Abstract
1 National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
2 Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100000, China
3 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
4 College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
5 Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, China
Microcombs have enabled a host of cutting-edge applications from metrology to communications that have garnered significant attention in the last decade. Nevertheless, due to the thermal instability of the microresonator, additional control devices like auxiliary lasers are indispensable for single-soliton generation in some scenarios. Specifically, the increased system complexity would be too overwhelming for dual-microcomb generation. Here, we put forward a novel approach to mitigate the thermal instability and generate the dual-microcomb using a compact system. This process is akin to mode-division multiplexing, as the dual-microcombs are generated by pumping the dual-mode of a single Si3N4 microresonator with a continuous-wave laser. Both numerical simulations and experimental measurements indicate that this innovative technique could offer a straightforward way to enlarge the soliton existence range, allowing entry into the multistability regime and triggering another microcomb alongside the main soliton pulse. This outcome not only shines new light on the interaction mechanism of microresonator modes but also provides an avenue for the development of dual-microcomb-based ranging and low phase noise microwave generation.
Photonics Research
2024, 12(1): 163
Runlin Miao 1,2,3Chenxi Zhang 1,2,3Xin Zheng 4Xiang’ai Cheng 1,2,3[ ... ]Tian Jiang 1,5,7,*
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
4 Defense Innovation Institute, Academy of Military Sciences PLA China, Beijing 100071, China
5 Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100000, China
6 e-mail: cqyinke@126.com
7 e-mail: tjiang@nudt.edu.cn
Dissipative Kerr solitons (DKSs) with mode-locked pulse trains in high-Q optical microresonators possess low-noise and broadband parallelized comb lines, having already found plentiful cutting-edge applications. However, thermal bistability and thermal noise caused by the high microresonator power and large temperature exchange between microresonator and the environment would prevent soliton microcomb formation and deteriorate the phase and frequency noise. Here, a novel method that combines rapid frequency sweep with optical sideband thermal compensation is presented, providing a simple and reliable way to get into the single-soliton state. Meanwhile, it is shown that the phase and frequency noises of the generated soliton are greatly reduced. Moreover, by closing the locking loop, an in-loop repetition rate fractional instability of 5.5×10-15 at 1 s integration time and a triangular linear repetition rate sweep with 2.5 MHz could be realized. This demonstration provides a means for the generation, locking, and tuning of a soliton microcomb, paving the way for the application of single-soliton microcombs in low-phase-noise microwave generation and laser ranging.
Photonics Research
2022, 10(8): 1859
Author Affiliations
Abstract
1 College of Computer, National University of Defense Technology, Changsha 410073, China
2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
3 National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
4 Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100020, China
5 Hefei Interdisciplinary Center, National University of Defense Technology, Hefei 230037, China
The application of machine learning to the field of ultrafast photonics is becoming more and more extensive. In this paper, for the automatic mode-locked operation in a saturable absorber-based ultrafast fiber laser (UFL), a deep-reinforcement learning algorithm with low latency is proposed and implemented. The algorithm contains two actor neural networks providing strategies to modify the intracavity lasing polarization state and two critic neural networks evaluating the effect of the actor networks. With this algorithm, a stable fundamental mode-locked (FML) state of the UFL is demonstrated. To guarantee its effectiveness and robustness, two experiments are put forward. As for effectiveness, one experiment verifies the performance of the trained network model by applying it to recover the mode-locked state with environmental vibrations, which mimics the condition that the UFL loses the mode-locked state quickly. As for robustness, the other experiment, at first, builds a database with UFL at different temperatures. It then trains the model and tests its performance. The results show that the average mode-locked recovery time of the trained network model is 1.948 s. As far as we know, it is 62.8% of the fastest average mode-locked recovery time in the existing work. At different temperatures, the trained network model can also recover the mode-locked state of the UFL in a short time. Remote algorithm training and automatic mode-locked control are proved in this work, laying the foundation for long-distance maintenance and centralized control of UFLs.
Photonics Research
2021, 9(8): 08001493
张馨 1,3殷科 2张江华 2邓清辉 1,3[ ... ]江天 1,*
作者单位
摘要
1 国防科技大学前沿交叉学科学院第四学科交叉中心, 北京 100020
2 军事科学院国防科技创新研究院, 北京 100071
3 国防科技大学前沿交叉学科学院高能激光技术研究所, 湖南 长沙 410073
中国激光
2021, 48(11): 1116002
张馨 1,2张江华 3李仪茗 1殷科 3[ ... ]江天 1,2,*
作者单位
摘要
1 国防科技大学前沿交叉学科学院, 湖南 长沙 410073
2 国防科技大学北京学科交叉中心, 北京 朝阳 100020
3 军事科学院国防科技创新研究院,北京 丰台 100071
中国激光
2021, 48(1): 0116002
Tian Jiang 1,*†Ke Yin 2†Cong Wang 3†Jie You 2[ ... ]Han Zhang 3,4
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 National Innovation Institute of Defense Technology, Academy of Military Sciences China, Beijing 100071, China
3 Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
4 e-mail: hzhang@szu.edu.cn
The year 2019 marks the 10th anniversary of the first report of ultrafast fiber laser mode-locked by graphene. This result has had an important impact on ultrafast laser optics and continues to offer new horizons. Herein, we mainly review the linear and nonlinear photonic properties of two-dimensional (2D) materials, as well as their nonlinear applications in efficient passive mode-locking devices and ultrafast fiber lasers. Initial works and significant progress in this field, as well as new insights and challenges of 2D materials for ultrafast fiber lasers, are reviewed and analyzed.
Photonics Research
2020, 8(1): 01000078
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
3 State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China
In this work, a soliton mode-locked erbium-doped fiber laser (EDFL) with a high-quality molecular beam epitaxy (MBE)-grown topological insulator (TI) Bi2Se3 saturable absorber (SA) is reported. To fabricate the SA device, a 16-layer Bi2Se3 film was grown successfully on a 100 μm thick SiO2 substrate and sandwiched directly between two fiber ferrules. The TI-SA had a saturable absorption of 1.12% and a saturable influence of 160 MW/cm2. After inserting the TI-SA into the unidirectional ring-cavity EDFL, self-starting mode-locked soliton pulse trains were obtained at a fundamental repetition rate of 19.352 MHz. The output central wavelength, pulse energy, pulse duration, and signal to noise ratio of the radio frequency spectrum were 1530 nm,18.5 pJ, 1.08 ps, and 60 dBm, respectively. These results demonstrate that the MBE technique could provide a controllable and repeatable method for the fabrication of identical high-quality TI-SAs, which is critically important for ultra-fast pulse generation.
140.4050 Mode-locked lasers 160.4236 Nanomaterials 
Chinese Optics Letters
2019, 17(7): 071403
Ke Yin 1,2Bin Zhang 1,3,4,*Linyong Yang 1,3,4Jing Hou 1,3,4
Author Affiliations
Abstract
1 College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 National Institute of Defense Technology Innovation, Academy of Military Sciences PLA China, Beijing 100010, China
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
4 Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser, Changsha 410073, China
A high-power all-fiber supercontinuum (SC) laser source based on germania-core fiber (GCF) was presented. The lesser absorption loss of GCF than silica fiber beyond 2.0 μm makes GCF more suitable for extending the SC spectrum to the long wavelength side. In this work, the GCF-based SC laser had a maximum power of 30.1 W, together with a 10 dB spectral bandwidth of >1000 nm spanning from 1.95 to 3.0 μm. To the best of our knowledge, this is the highest output power level ever reported for a GCF-based SC laser as well as a 2–3 μm SC laser.
Supercontinuum generation Lasers, fiber Nonlinear optics, fibers Infrared and far-infrared lasers 
Photonics Research
2018, 6(2): 02000123
Linyong Yang 1Bin Zhang 1,2,3Ke Yin 1Tianyi Wu 1[ ... ]Jing Hou 1,2,3,*
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
3 Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser, Changsha 410073, China
A spectrally flat mid-infrared supercontinuum (MIR-SC) spanning 2.8–3.9 μm with a maximum output power of 411 mW was generated in a holmium-doped ZBLAN fiber amplifier (HDZFA). A broadband fiber-based SC covering the 2.4–3.2 μm region was designed to seed the amplifier. Benefiting from the broadband seed laser, the obtained SC had a high spectral flatness of 3 dB over the range of 2.93–3.70 μm (770 nm). A spectral integral showed that the SC power beyond 3 μm was 372 mW, i.e., a power ratio of 90.6% of the total power. This paper, to the best of our knowledge, not only demonstrates the first spectrally flat MIR-SC directly generated in fluoride fiber amplifiers, but also reports the highest power ratio beyond 3 μm obtained in rare-earth-doped fluoride fiber until now.
Supercontinuum generation Lasers, fiber Nonlinear optics, fibers Fiber optics amplifiers and oscillators 
Photonics Research
2018, 6(5): 05000417
作者单位
摘要
1 国土资源部珠宝玉石首饰管理中心北京珠宝研究所, 北京 100013
2 中国地质大学地球科学学院, 武汉 湖北 430074
近来, 一种产自老挝的新型印章石(俗称“老挝石”)涌进国内市场, 对我国印章石市场造成一定影响, “老挝石”的研究尚处于起步阶段, 对其颜色成因的研究更为缺乏。 采用漫反射光谱(DRS)结合X射线粉晶衍射(XRD)、 红外光谱(FTIR)、 X射线荧光光谱(EDXRF)等测试对红色“老挝石”的矿物成分和致色机理进行深入研究。 结果显示, “老挝石”的主要矿物成分为地开石, 并含有少量高岭石, 化学成分中的Fe含量和“老挝石”红色色调呈正相关关系, 即颜色越深Fe的含量越高。 铁质矿物呈微晶集合体浸染分布于地开石的颗粒间, 由于其含量低、 粒度细小, 常规的微区测试方法无法确认其种属。 相比之下, 漫反射光谱对微晶铁矿物的鉴定十分有效, 对可见光波段漫反射光谱处理得到导数等, 在土壤沉积物中已经被用来定量测定针铁矿和赤铁矿。 该研究中“老挝石”基体与土壤沉积物均为粘土矿物, 可以用漫反射光谱来判定“老挝石”中铁矿物种属。 漫反射光谱一阶导数法显示, 其谱峰位于565~570 nm, 由此确认铁矿物的种属为赤铁矿。 微晶赤铁矿分布于“老挝石”矿物颗粒间, 使样品产生红色, 赤铁矿含量越高, 红色调越深。
漫反射光谱 “老挝石” 地开石 赤铁矿 颜色成因 Diffuse reflectance spectroscopy “Laowo Stone” Dickite Hematite Coloration 
光谱学与光谱分析
2016, 36(8): 2634

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!